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We generalize the first and second Noether theorems (Noether identities) to a 
constrained system in phase space. As an example, the conservation law deriving 
from Lagrange's formalism cannot be obtained from H e via the generalized first 
Noether theorem (GFNT); Dirac's conjecture regarding secondary first-class 
constraints (SFCC) is invalid in this example. A preliminary application of the 
generalized Noether identities (GNI) to nonrelativistic charged particles in an 
electromagnetic field shows that on the constrained hypersurface in phase space 
one obtains electric charge conservation. This conservation law is valid whether 
Dirac's conjecture holds true or not. 

1. I N T R O D U C T I O N  

The connec t ion  be tween  the invar iance  o f  the  ac t ion  in tegra l  u n d e r  a 
finite con t inuous  g roup  and  conserva t ion  laws is given by  the first N o e t h e r  
t heo rem ( F N T ) .  The second  N o e t h e r  t heo rem refers to the invar iance  o f  
the  ac t ion  u n d e r  an infinite con t inuous  group.  In  this case there  exist  
d i f ferent ia l  ident i t ies  which  involve var ia t iona l  der ivat ives .  These  theo rems  
have an i m p o r t a n t  role  in theore t ica l  physics .  A genera l i za t ion  o f  the  F N T  
was given by  Rosen (1974a, b and  references  there in) ,  and  a genera l i za t ion  
o f  the F N T  for cons t r a ined  and  nonconserva t ive  systems was given by  Li 
(1981, 1984; Li and  Li, 1990). A genera l i za t ion  o f  Noe the r ' s  ident i t ies  for  
var iant  systems was given by  Li (1987). In  these  papers ,  all cons ide ra t ions  
are  based  on an examina t i on  o f  the Lagrang ian  in conf igura t ion  space  and  
the co r r e spond ing  t r ans fo rma t ion  expressed  in terms o f  Lagrange  var iables .  
Fo r  regula r  Lagrang ians  o f  classical  mechan ica l  systems the invar iance  o f  
the Lagrang ian  unde r  a finite con t inuous  g roup  in terms o f  H a m i l t o n ' s  
var iables  was d iscussed  by Djukic  (1974). Here,  we fur ther  discuss  s ingu la r  
Lagrang ian  systems.  Di rac  (1950, 1964) p r o p o s e d  a me thod  for deve lop ing  

k Department of Applied Physics, Beijing Polytechnic University, Beijing, 100022, China. 
2Space Physics Institute, Chinese Academy of Science, Beijing, China. 

225 
002(I-7748/91/0200-0225S06.50/0 ~: 1991 Plenum Publishing Corporat ion 



226 Li and Li 

the formalism for this system, and its quantization. The singular Lagrangian 
system is subject to some inherent phase space constraint. Dirac conjectured 
that all secondary first-class constraints (SFCC) generate gauge transforma- 
tions which leave the physical state invariant. Dirac's conjecture has been 
widely discussed. In this paper, first, we generalize the FNT in phase space 
for a constrained Hamiltonian system. An example is given in which the 
conservation law deriving from the usual Lagrange formalism cannot be 
obtained from HE via this GFNT,  which implies that Dirac's conjecture 
fails in this example. Second, considering the transformation properties of 
the system under an infinite continuous group in terms of canonical vari- 
ables, we obtain the GNI  in phase space. Combining these GNI  and 
constraint conditions, we obtain more relations among some of the variables. 
A preliminary application of  the GNI  to nonrelativistic charged particles 
in an electromagnetic field, on the constrained hypersurface, shows that 
one obtains electric charge conservation automatically, which differs from 
the usual way to obtain this result. This conservation law is valid whether 
Dirac's conjecture holds or not. 

2. G E N E R A L I Z A T I O N  OF FIRST N O E T H E R  T H E O R E M  

Consider the transformation properties of a constrained dynamic sys- 
tem under a finite continuous group. We can generalize the FNT to Hamil- 
tonian coordinates. For simplicity one usually considers a system with finite 
degrees of  freedom exhibiting the essential problems of invariant theories; 
the extension to field theories is formally straightforward. Consider a 
mechanical system with N degrees of freedom described by a singular 
Lagrangian L( t, q, q) ( q = { q l, . . . , qN}  ). This system is subject to Dirac's 
constraints 

G k ( q , p ) = O  ( k = l , 2 , . . . ,  K)  (1) 

where p = { P l , . . . ,  PN} are the generalized momenta corresponding to the 
generalized coordinates q. Let us consider an infinitesimal continuous r- 
parameter transformation of the time, generalized coordinates, and general- 
ized momenta 

t--> t ' =  t +  ~t = t+e, / r '~( t ,  q , p )  

q i ( t )  ~ q r ( t ' )  = q i ( t )  + 6q ' ( t )  : q~(t) + e~,~i'r(t, q, p )  (2) 

p,(t) --> p l ( t ' )  = p , ( t )  + 8pi( t)  = p,(t) + e,;qT(t,  q, p)  

Suppose Lps = p~tj i -  H is gauge variant under the transformation (2), i.e., 
is invariant up to an exact differential e,~ d ~ ' T / d t ,  where H is the Hamil- 
tonian, ~,r = D,~(t, q , p )  (or= 1, 2 , . . . ,  r), and e~ are parameters. Repeated 
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indices are summed. Then we have 

where 

OH)+~ ,[ . OHm+ d dr} ~ 
Spi ~li--~iPi q ~--Pi--~-'qTqi) -~t (piSq' + Lps6t )=  e,~ d---t--- (3) 

~Pi = ~Pi --Pi ~t, ~--qi = ~q,__ 4;~t (4) 

Under the transformation (2), suppose the changes of  the Gk are given by 
~Gk = e~K~ .  Then we have 

O G k -  i OGk 
6Gk =-~q~ 6q +--Z-  6P~ = e~F~ (5) 

opi 

where 

o" o- OGk i o- OGk . o- 
Fk - K k  --~qi pit  (6) - q ~ api 

Using a Lagrangian multiplier ~ k(t)  and combining the expressions (3) and 
(5), from the equations of  motion of a constrained Hamiltonian system, 
one obtains 

d 
d t [  Pi (s r - q ~r ~) + Lps 7"<~ - -  ~}'7] = A kf~ (7) 

Therefore, we have the following G F N T  in Hamil ton form: If, under the 
transformation (2), the Lps is invariant up to an exact differential and such 
that constraint conditions satisfy F~ = 0, then automatically there are con- 
servation laws 

p~;" - H~ -'~ - f}~ = const (8) 

This result is based upon the symmetry of the system in phase space. 

3. DIRAC'S  C O N J E C T U R E  

Dirac's generalized canonical formalism plays an important role in 
modern field theory (Sundermeyer,  1982). However, there are some basic 
problems in this theory that are still widely discussed in the literature. One 
of them is Dirac's conjecture. Using the above G F N T  in phase space, we 
can give a counterexample to deny the validity of  Dirac's conjecture. 

Let us recall briefly the results of Dirac. For the singular Lagrangian 
L the Hessian matrix Hq = OeL/O(lio(lJ has a rank M less than the number  
of  degrees of  freedom N. It is not possible to eliminate all the velocities qi 
as functions of  momenta  p; by using just their definition pi = OL/O(I;; this 
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situation implies the existence of N - M independent relations between the 
q's and p's of the form 

~Ok(q, p)  ~ 0 (9) 

These relations are called primary constraints (PC). To account automati- 
cally for these constraints we introduce the total Hamiltonian 

H T = H + A k~k (10) 

where A k is a set of Lagrangian multipliers. All the constraints must be 
preserved in time, 

~bk = {Pk, Hr} ~ 0 (11) 

where {., �9 } denote the Poisson bracket. This consistency requirement often 
implies new constraints 

xt(q, P) ~ 0  (12) 

etc. The process of the consistency requirements will terminate at some 
stage when new constraints no longer appear. Constraints thus obtained 
and different from PC are called secondary constraints (SC). The constraints 
in the first class are those whose Poisson bracket with any of the constraints 
is zero or equal to the linear combination of the constraints; if this is not 
the case, the constraint is called second class. Dirac conjectured that all 
SFCC are independent generators of gauge transformations which generate 
equivalence transformations among physical states. If  this conjecture holds 
true, then the dynamics of a system possessing PC ~0 k ~ 0 and SFCC Xm ~ 0 
should be correctly described by the equations of motion arising from the 
extended Hamiltonian 

HE = H + A k~k + l~mxm (13) 

where/~ m are also Lagrangian multipliers. Over a long period of time there 
have been objections to Dirac's conjecture (Dominici and Gomis, 1980; 
Castellani, 1982; Costa et al., 1985; Sugano, 1982; Sugano and Kamo, 1982; 
Sugano and Kimura, 1983a, b). Due to an improper interpretation of  the 
relation of gauge degrees of freedom to SFCC, there still appear arguments 
asserting that all SFCC are associated with gauge freedom (Gotoy, 1983; 
Di Stefano, 1983; Appleby, 1982). Grficia and Pons (1988) point out a 
careful distinction between the gauge transformation of a solution of the 
equation of motion and a gauge transformation of a point in phase space, 
which allows us to give a definitive clarification of the Dirac conjecture. 
Numerous examples are now known for which Dirac's conjecture fails 
(Allcock, 1975; Cawley, 1979, 1980; Frenkel, 1980). All these objections 
are based on the straightforward observation that the equations of motion 
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deriving from HE are not strictly equivalent to the corresponding Lagrange 
equations. Here, we shall observe conservation laws deriving from He via 
the G F N T  in phase space which in some examples are exactly equivalent 
to the conservation laws arising from Lagrange's formalism via the classical 
FNT, and in others are not. 

Now, from the Lagrangian 

L = 2 ( ~  + ~ )  + �89 - a )2+  (z2 - b) 2] (14) 

where a and b are constants. There is a PC 

,; =p~. ~ 0  (15) 

and the total Hamiltonian has an arbitrary function A, 
2 ..~ 2 1 /2  1 Z H T = [ P x ( P z ,  Pz2)] --~y[( 1 - a ) 2 + ( z z - b ) Z ] + x ~  (16) 

The consistency condition (11) to equation (I5) yields the additional SC, 

X~ = (zl - a)Z+ (z2-  b) 2 = 0 (17) 

We do not write the constraint in linearized form, as Cawley and others 
do, because X ~ 0 implies X 2--- 0, which will confuse the concepts of  weak 
and strong equality. 

The consistency condition to equation (17) gives another SC 

X2 = (zl  - a)pz, + (-72 - b)pz2 ~ 0 (18) 

The algorithm terminates after the next step, the consistency of equation 
(18), which gives 

X3 =Px ~ 0  (19) 

The constraints ~, XI, Xz, and X3 are first class. So the extended Hamiltonian 
is 

He = H+Aq~ +/zlX ~ At- ~2X2~ i/z3)(3 (20) 

The Lagrangian Lps and q~ are invariant under rotation in the (zl, z2) 
plane around the point (a, b). From the G F N T  expression (8) one can 
obtain angular momentum conservation. This conclusion agrees with the 
result formally yielded by Lagrange's variable via the classical leNT. But if 
we take into account the SFCC for this problem, from the extended Hamil- 
tonian He we cannot obtain the above results. The Dirac conjecture fails 
for this example. 

4. GENERALIZED NOETHER IDENTITIES IN PHASE SPACE 

We shall give a generalization of Noether's identities in Hamilton form. 
Let us consider the invariance of the action integral under a transformation 
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which depends upon the arbitrary functions e~,(t) and their derivatives up 
to some fixed order. Let such an infinitesimal transformation in phase space 
be 

t ~ t '= t + R~e~( t) = t + a~( t)Dke~( t) 

qg( t)-> qr( t') = q~( t) + Sg~e~( t) = q i( t) + bi~Dle~( t) (21) 

p~(t) -> pl(t ' )  -- p~(t) + TTe~(t) = pg(t) + c i~( t )D~e~( t )  

where D k = d k / d t  k, and a k ( t ) ,  t ~t), c~m(t) are some smoothed functions. 
Under the transformation (21), suppose the action integral with Lagrangian 
Lps is gauge variant. Then we have 

l * t2 i O- �9 O" 
[E<p)(T, -p~R )e~+ EIq)(s'~'-4~R~')e~] dt 

tl 

+[p,(Si~-O'R~)+LpsR~-a~]e~ =0 (22) 
t l  

where 

OH oH 
Eip) : (1 i - - - -  E~ q ) :  - P i - - ~ :  (23) 

Opi' Oq ~ 

l)  ~ are linear differential operators. Since e~(t) are arbitrary, we may choose 
er and their derivatives up to some fixed order such that the endpoints 
vanish, and repeat the integration by part of the left-hand side of the identity 
(22). Again appealing to the arbitrariness of the e~(t), we can force the 
endpoint term to vanish. After this we can apply the fundamental lemma 
of the calculus of variations to conclude that 

" o -  i n o "  i �9 " i c r  ( q )  " o -  ( q )  . i  - -  
S Ei  - R  (Ei  q ) - O  Ti E < p ) - R  (Er (24) 

where /~,T, ; ~ ,  ~ are the adjoint operators with respect to R ~, S ~'~, TT, 
respectively (Li, 1987). The expressions (24) are called the GNI  in phase 
space. As is well known, a gauge-variant system is a constrained dynamical 
system (Sundermeyer, 1982). We combine the constraint equations and the 
GNI  (24), which may give rise to more relationships among some of the 
variables. Sometimes these can tell us at what stage the Dirac-Bergmann 
algorithm will terminate. 

5. GAUGE VARIANCE AND ELECTRIC 
CHARGE CONSERVATION 

For a system of nonrelativistic particles each having charge Qi, mass 
mi, and a displacement ri(t) at time t in an electric field E and magnetic 
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field B, the Lagrangian is (Kobe,  1981) 

if 2 2 1 2 if L=-~ d3x(E -B )+~mi~ + c d3x(J'A-cpAo) (25) 

Under the gauge transformation 

A ' = A + V e ,  
lOe 

t - -  - - - - - -  Ao - Ao (26) 
cot  

where e(r, t) is an arbitrary differentiable function, the Lagrangian is gauge- 
variant, i.e., 

Qi de(ri, t) 
L ' =  L+Y~ (27) 

i c dt 

The canonical momenta  conjugate to the coordinates r; are 

p, =OL/Or= m~i+ Q' A (28) 
c 

The canonical momenta  conjugate to the field are 

,n = 6L/6)~ = -E /e ,  To = 6L/6Ao = 0 (29) 

The Hamiltonian for the total system is 

H = f d3x (0"  A +  7roA0)+pi"/'/ - -  L 

The PC of this system is 

q~ = 7ro ~ 0 (31) 

The consistency condition of ~ provides the SC 

X = ~o={~'o,  Hr} = V "  E - O = 0  (32) 

where HT = H +~ d3x A~'o, A is a Lagrangian multiplier, and {-, �9 } denotes 
the Poisson bracket, 

{F, G}= d3x - ~  ~Tr 67r 6A3 
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In the phase space, the Lagrangian Lp s is also gauge-variant under the 
transformation 

St=0, 6ri =0, 6p~ =Tie = Q i v e  
c 

1 0e 
8 A = S e  = V e, 6Ao = Soe . . . .  

c o t  

6 ~  = O, 8Iro = 0 

In this case, the GNI  (24) becomes 

(34) 

T/(r i  O H m + -  8 H  . 6 H  

Substituting the expressions (28), (30), and (34) into the identity (35), after 
taking the integral over the whole coordinate space, we conclude that on 
the constrained hypersurface the electric charge must be conserved. In the 
above discussion we have not used the canonical equations of  the con- 
strained dynamical system; hence this conservation law is valid whether 
Dirac's conjecture holds true or not. 

6. CONCLUSIONS 

We have obtained the G F N T  and GNI  for constrained dynamical 
systems in Hamilton variables, which may be used to analyze the Dirac 
constraints of the system. We observe that the conservation law deriving 
from He via the G F N T  may or may not be exactly equivalent to the 
corresponding conservation law arising from Lagrange's formalism via the 
classical FNT. An example was given in which Dirac's conjecture fails, 
which differs from other counterexamples in that we do not write constraints 
in a linearized form as Cawley and others do. If we write the constraint in 
a linearized form, then all the constraints become second class. We combine 
the GNI  for gauge-variant systems and constraint equations, which can give 
rise to more restrict' ~ns among some of the variables. As a preliminary 
application to nonrelativistic charged particles in an electromagnetic field, 
on the constrained hypersurface one obtains electric charge conservation 
automatically. This result does not depend on the validity of Dirac's 
conjecture. 
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